If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6e^2+24e=0
a = 6; b = 24; c = 0;
Δ = b2-4ac
Δ = 242-4·6·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$e_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-24}{2*6}=\frac{-48}{12} =-4 $$e_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+24}{2*6}=\frac{0}{12} =0 $
| 22=x/18 | | v=48389-(48389)(.16)(18) | | 20x=1440+8x | | F(x)=3x3-6 | | 158*81=y | | x=20-2x/10 | | (8x+3)(2x-5)-(3x+5)(3x-5)=22x-10 | | 6x+2=5×+4 | | 7x2+56x=0 | | 12.08+5/24=x | | 2(2x+3)=6x-7 | | 1/10+1/20+1/30+1/40+12.08=x | | 12.08+24/5=x | | -6×+2=-5x+4 | | 0.2y+5/3=26/3-y | | B(x)=50.75-0.09x | | 2.85+2.7=8.3+x | | w^2+28w+46=0 | | -0.2a=48 | | x=(32/(3x+2) | | x^2+x^2+5=30 | | 2x^2+4x=336 | | 2b+24=143 | | 8x+9-12x=4x+3-3x | | (X+7)×x=120 | | 11x-10=-11×-208 | | 4u-39=8u-82 | | 3x-15-2x+10=90 | | (2x^2+4)/2=168 | | 3x^2-9x=5 | | 9^×-1-2x3^x-27=0 | | 55.8=4.5x |